PEMODELAN MATEMATIS KINETIKA FERMENTASI LIMBAH NIRA AREN (ARENGA PINNATA) MENJADI ASAM ASETAT: STUDI OPTIMASI VARIABEL WAKTU, SUHU, DAN GEOMETRI WADAH UNTUK STANDARISASI PRODUKSI HERBISIDA

Authors

  • Topanus Tulak Universitas Kristen Indonesia
  • Andi Kaharuddin Universitas Lakidende Unaaha

DOI:

https://doi.org/10.51574/hybrid.v3i2.4472

Keywords:

fermentasi asetat, pemodelan kinetika, Acetobacter spp, optimasi bioreaktor, asam asetat bioherbisida

Abstract

Limbah nira aren (Arenga pinnata) yang terbuang tanpa pemanfaatan optimal merupakan permasalahan lingkungan sekaligus kehilangan potensi ekonomi. Penelitian ini mengembangkan model matematis berbasis simulasi numerik untuk mengoptimalkan produksi asam asetat melalui fermentasi asetat dengan fokus pada presisi parameter operasional. Tiga persamaan kinetika utama diintegrasikan: persamaan Monod untuk pertumbuhan biomassa Acetobacter spp., persamaan Luedeking-Piret untuk pembentukan produk, dan persamaan Arrhenius untuk ketergantungan suhu. Model diselesaikan menggunakan metode Runge-Kutta orde 4 (RK4) untuk menghasilkan prediksi kuantitatif. Hasil simulasi menunjukkan bahwa kondisi steady state dengan konsentrasi asam asetat maksimal tercapai pada hari ke-14, laju reaksi pada suhu 20°C mengalami penurunan hingga 45% dibandingkan suhu 30°C, dan pengisian wadah optimal berada pada 75% volume total untuk mencegah hipoksia. Model ini menghasilkan parameter operasional presisi yang dapat diterjemahkan menjadi rekomendasi desain teknologi: wadah terkalibrasi dengan garis penanda 75%, sistem isolasi termal untuk menjaga suhu ≥25°C, dan manajemen waktu panen tepat 14 hari. Penelitian ini memberikan landasan matematis untuk standarisasi produksi asam asetat sebagai bahan aktif bioherbisida dari limbah aren.

References

Adler, P., Geisen, R., & Schmidt-Heydt, M. (2025). Development of a mathematical model for microbial consumption of glucose and fructose during cocoa fermentation process. Microbiology Spectrum, 13(1), e01234-24.

Bozorg, A., Gates, I. D., & Sen, A. (2014). Enhanced oxygen transfer rate and bioprocess yield by using magnetite nanoparticles in fermentation media. Journal of Nanobiotechnology, 12, Article 42. https://doi.org/10.1186/s12951-014-0042-8

Chen, Y., Bai, Y., & Li, D. (2021). Biotechnological processes in fruit vinegar production: New insights and challenges. Foods, 10(11), 2854.

De Vuyst, L., & Weckx, S. (2022). Exploring cocoa bean fermentation mechanisms by kinetic modelling: An integrated approach. International Journal of Food Microbiology, 365, 109546.

Deshwal, S., & Kuhad, R. C. (2019). Modelling of molasses fermentation for bioethanol production: A comparative investigation of Monod and Andrews models accuracy assessment. Biomolecules, 9(10), 612.

Doran, P. M. (2013). Bioprocess engineering principles (2nd ed.). Academic Press.

Ferreira, A. R., & Rodrigues, L. R. (2024). Dynamic modeling of bacterial cellulose production using combined substrate- and biomass-dependent kinetics. Computation, 12(12), 239. https://doi.org/10.3390/computation12120239

Garcia-Ochoa, F., & Gomez, E. (2000). Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes. Journal of Fermentation and Bioengineering, 89(4), 303-312.

Gomes, J., & Ghoshal, A. K. (2021). Bioprocess control: Current progress and future perspectives. Life, 11(2), 115.

Hai, A., & Rambabu, K. (2024). Tapping into palm sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon, 10(15), e35611.

Heins, A. L., & Weuster-Botz, D. (2021). The Monod model is insufficient to explain biomass growth in nitrogen-limited yeast fermentation. Applied and Environmental Microbiology, 87(4), e02112-20.

Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H., & Lim, S. J. (2018). Vinegar production from vegetable waste: Optimization of physical condition and kinetic modeling of fermentation process. International Journal of Food Engineering, 14(4).

IOP Conference Series. (2021). The distillation process of palm sap (Arenga pinnata MERR) to produce bioethanol. IOP Conference Series: Earth and Environmental Science, 819, 012051.

IOP Conference Series. (2023). Alcohol concentration from fermentation and distillation of palm sap (Arenga pinnata) in North Halmahera. IOP Conference Series: Earth and Environmental Science, 1255, 012064.

Jafari, M., & Bakker, H. H. (2021). Sustainable design approach for modeling bioprocesses from laboratory toward commercialization. Polymers, 13(18), 3045.

Kreyenschulte, D., Emde, F., & Regestein, L. (2017). Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors. Water Practice and Technology, 12(2), 345-354.

Krusong, W., & Vichitraka, A. (2017). Optimization of acetic acid production rate by thermotolerant Acetobacter spp. American Journal of Microbiology and Biotechnology, 4(1), 12-19.

Kusmanto, D., & Roberts, J. (2024). Zeaxanthin production by an Antarctic Flavobacterium sp.: Effect of dissolved oxygen concentration and modeling kinetics. ACS Omega, 9(5), 5432-5440.

Leal, G. A., & Silva, D. P. (2018). A mathematical model of cocoa bean fermentation. African Journal of Biotechnology, 17(12), 398-406.

Lee, J. H., & Kim, S. H. (2023). Productivity enhancement in L-lysine fermentation using oxygen-enhanced bioreactor and oxygen vector. BMC Biotechnology, 23, 12.

Lefeber, T., Gobert, W., Vrancken, G., Camu, N., & De Vuyst, L. (2010). Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Applied and Environmental Microbiology, 76(12), 3709–3717.

Li, S., Li, P., & Feng, F. (2022). Screening and characterization of new Acetobacter fabarum and Acetobacter pasteurianus strains. Microorganisms, 10(2), 432.

Luo, J., & Xia, X. (2018). Jet aeration as alternative to overcome mass transfer limitation of stirred bioreactors. Engineering in Life Sciences, 18(5), 312-321.

Luong, J. H. T. (1985). Kinetics of ethanol inhibition in alcohol fermentation. Biotechnology and Bioengineering, 27(3), 280–285.

Macías, M., Caro, I., & Cantero, D. (1998). Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: Influence of the temperature of operation. Applied Microbiology and Biotechnology, 49, 62-67.

Matsushita, K., Toyama, H., & Adachi, O. (2005). Respiratory chains and bioenergetics of acetic acid bacteria. Advances in Microbial Physiology, 50, 247–301.

Nakano, S., & Fukaya, M. (2005). Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Journal of Bacteriology, 187(3), 1192-1195.

Nanda, K., Taniguchi, M., Ujike, S., Ishihara, N., Mori, H., Ono, H., & Murooka, Y. (2001). Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (Kouzu) and unpolished rice vinegar (Kurozu). Applied and Environmental Microbiology, 67(2), 986-990.

Nikel, P. I., & Chavarría, M. (2022). Optimization and scale-up of fermentation processes driven by models. Bioengineering, 9(4), 145.

Noorman, H. J. (2017). Bioprocess scale-up/down as integrative enabling technology: From fluid mechanics to systems biology. Microbial Biotechnology, 10(5), 1251-1254.

Okoro, O. V., & Sun, Z. (2024). Design, modeling and performance evaluation of simulated palm wine bioreactor fermenter. 2024 IEEE Conference on Technologies for Sustainability (SusTech), 112-118.

Olo, S. B., & Paembonan, R. E. (2022). Pyroligneous acids from biomass charcoal by-product as a potential non-selective bioherbicide for organic farming. Environmental Science and Pollution Research, 29, 51234-51245.

Park, S., & Lee, J. (2020). Gas circulation rate and medium exchange ratio as influential factors affecting ethanol production in carbon monoxide fermentation. Energy & Environmental Science, 13, 1560-1572.

Perez, S., & Schmidt, A. (2024). Integration approaches to model bioreactor hydrodynamics and cellular kinetics. Bioengineering, 11(1), 78.

Raspor, P., & Goranovic, D. (2008). Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology, 28(2), 101–124.

Saputro, A. D., Van de Walle, D., & Dewettinck, K. (2018). Palm sap sources, characteristics, and utilization in Indonesia. Journal of Food and Nutrition Research, 6(9), 590-596.

Sari, P. P., & Wijaya, C. H. (2023). Palm sap sugar an unconventional source of sugar exploration for bioactive compounds. Heliyon, 9(3), e13210.

Shen, Y., & Brown, R. C. (2019). Evaluation of gas mass transfer in reactor for syngas fermentation. AIP Conference Proceedings, 2116, 030012.

Shuler, M. L., & Kargi, F. (1991). Bioprocess engineering: Basic concepts. Prentice Hall.

Shuler, M. L., Kargi, F., & DeLisa, M. (2017). Bioprocess engineering: Basic concepts (3rd ed.). Prentice Hall.

Soares, A., & Castro, R. (2025). Isolation and characterization of a thermotolerant acetic acid bacteria strain for improved vinegar production. Foods, 14(2), 230.

Varela, C., & Borneman, A. R. (2017). Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits. PLOS ONE, 12(1), e0170067.

Venkateswarlu, C. (2015). Analytical solution of Luedeking–Piret equation for a batch fermentation obeying Monod growth kinetics. Biotechnology and Bioengineering, 112(1), 200-205.

Villarreal-Soto, S. A., & Bouajila, J. (2024). Modelling pH dynamics, SCOBY biomass formation, and acetic acid production of Kombucha fermentation. Processes, 12(3), 450.

Wang, Z., & Liu, S. (2024). A review on the interaction of acetic acid bacteria and microbes in food fermentation. Foods, 13(5), 789.

Webber, C. L., White, P. M., & Shrefler, J. W. (2018). Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy. Journal of Agricultural Science, 10(8), 1-8.

Yadav, A., & Kumar, N. (2024). Nutritional requirements and fermentation condition for acetic acid production from agricultural fruit waste. Chemical Engineering & Technology, 47(2), 345-356.

Yang, H., & Zhou, J. (2023). Quorum‐sensing in Acetobacter pasteurianus and its effect on acetic acid fermentation. Food Bioengineering, 2(1), 45-52.

Zheng, Y., & Zhang, W. (2022). Improving the acetic acid fermentation of Acetobacter pasteurianus by enhancing the energy metabolism. Frontiers in Bioengineering and Biotechnology, 10, 829567.

Downloads

Published

2024-11-25

How to Cite

Tulak, T., & Kaharuddin, A. (2024). PEMODELAN MATEMATIS KINETIKA FERMENTASI LIMBAH NIRA AREN (ARENGA PINNATA) MENJADI ASAM ASETAT: STUDI OPTIMASI VARIABEL WAKTU, SUHU, DAN GEOMETRI WADAH UNTUK STANDARISASI PRODUKSI HERBISIDA. Hybrid: Jurnal Pendidikan Dan Pembelajaran Sains, 3(2), 23–31. https://doi.org/10.51574/hybrid.v3i2.4472