Analisis Perkembangan Teknologi dan Tren Terkini Pada Platform Metaverse dalam Pendidikan: Perspektif Manajerial
https://doi.org/10.51574/jrip.v4i3.2059
Keywords:
Platform Metaverse, Pendidikan, Analisis Bibliometrik, ManajerialAbstract
Seiring dengan berkembangnya dunia virtual, peran metaverse dalam pendidikan semakin meningkat dan memerlukan integrasi yang handal dalam sistem pendidikan untuk mencapai tujuan optimal. Penelitian ini menggunakan analisis bibliometrik untuk mengevaluasi perkembangan dan tren terkini pada platform metaverse dalam konteks pendidikan berdasarkan artikel-artikel yang diterbitkan antara tahun 2007 hingga 2023. Meskipun teknologi dunia virtual imersif dan infrastrukturnya masih dalam tahap pengembangan untuk lintas platform, perhatian penelitian terhadap dampak transformatif metaverse dalam pendidikan terus meningkat. Hasil penelitian menunjukkan bahwa dalam era digital yang semakin cepat berubah, dengan penerapan teknologi metaverse khususnya yang didukung oleh kecerdasan buatan dari prediksi hingga evaluasi, bahwasanya menjadi sangat penting dalam mengatasi tantangan interaksi di lingkungan virtual. Tren saat ini menunjukkan peningkatan penggunaan metaverse dan neural network pada deep learning dan machine learning seperti CNN, ANN, RNN, atau kombinasi ANN-RNN. Selain itu, perspektif manajerial juga melihat bahwa perlunya skenario pembelajaran yang tepat dengan memanfaatkan teknologi metaverse terintegrasi secara efektif agar dirasakan manfaat dalam pendidikan, serta diketahui virtual simulation learning, augmented learning dan collaborative learning banyak digunakan untuk keperluan medis. Penelitian ini memberikan kontribusi penting bagi peneliti dan pendidik dengan meningkatkan pemahaman mengenai platform metaverse dan kecerdasan buatan, serta menawarkan bagaimana menerapkan teknologi ini untuk mencapai hasil pendidikan inovatif yang lebih baik di masa depan.
Downloads
References
Ahuja, A. S., Polascik, B. W., Doddapaneni, D., Byrnes, E. S., & Sridhar, J. (2023). The Digital Metaverse: Applications in Artificial Intelligence, Medical Education, and Integrative Health [Note]. Integrative Medicine Research, 12(1), Article 100917. https://doi.org/10.1016/j.imr.2022.100917 DOI: https://doi.org/10.1016/j.imr.2022.100917
Alhamad, A. Q., Alomari, K. M., Alshurideh, M., Al Kurdi, B., Salloum, S., & Al-Hamad, A. Q. (2022). The Adoption of Metaverse Systems: A hybrid SEM - ML Method [Conference paper]. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2022, https://doi.org/10.1109/ICECCME55909.2022.9988215 DOI: https://doi.org/10.1109/ICECCME55909.2022.9988215
Almarzouqi, A., Aburayya, A., & Salloum, S. A. . (2022). Prediction of user’s intention to use metaverse system in medical education: A hybrid SEM-ML learning approach. IEEE Access, 10, 43421-43434. https://doi.org/https://doi.org/10.1109/access.2022.3169285 DOI: https://doi.org/10.1109/ACCESS.2022.3169285
Babaei, M., Galadari, H., Gold, M. H., & Goldust, M. (2023). Cosmetic dermatology services in metaverse [Letter]. Journal of Cosmetic Dermatology, 22(4), 1414-1415. https://doi.org/10.1111/jocd.15670 DOI: https://doi.org/10.1111/jocd.15670
Bansal, G., Rajgopal, K., Chamola, V., Xiong, Z., & Niyato, D. (2022). Healthcare in Metaverse: A Survey on Current Metaverse Applications in Healthcare [Article]. IEEE Access, 10, 119914-119946. https://doi.org/10.1109/ACCESS.2022.3219845 DOI: https://doi.org/10.1109/ACCESS.2022.3219845
Barry, D. M., Ogawa, N., Dharmawansa, A., Kanematsu, H., Fukumura, Y., Shirai, T., Yajima, K., & Kobayashi, T. (2015). Evaluation for students' learning manner using eye blinking system in Metaverse [Conference paper]. Procedia Computer Science, https://doi.org/10.1016/j.procs.2015.08.181 DOI: https://doi.org/10.1016/j.procs.2015.08.181
Beck, D., Morgado, L., & O'Shea, P. (2024). Educational Practices and Strategies with Immersive Learning Environments: Mapping of Reviews for Using the Metaverse [Article]. IEEE Transactions on Learning Technologies, 17, 319-341. https://doi.org/10.1109/TLT.2023.3243946 DOI: https://doi.org/10.1109/TLT.2023.3243946
Bercich, J., Chung, V., & Chen, X. (2023). Deep Learning Attention-Ranked Media Space Generation for Virtual Reality Equirectangular Scene Augmentation. 2023 IEEE Region 10 Symposium, TENSYMP 2023, DOI: https://doi.org/10.1109/TENSYMP55890.2023.10223646
Bernardini, S., Porayska-Pomsta, K., & Smith, T. J. (2014). ECHOES: An intelligent serious game for fostering social communication in children with autism. Information Sciences. Elsevier BV, 264, 41-60. https://doi.org/ https://doi.org/10.1016/j.ins.2013.10.027 DOI: https://doi.org/10.1016/j.ins.2013.10.027
Chung, C. J., Lai, C. L., & Hwang, G. J. (2019). Roles and research trends of flipped classrooms in nursing education: a review of academic publications from 2010 to 2017. Interactive Learning Environments, 29(6), 883–904. https://doi.org/https://doi.org/10.1080/10494820.2019.1619589 DOI: https://doi.org/10.1080/10494820.2019.1619589
Díaz, J. E. M., Saldaña, C. A. D., & Ávila, C. A. R. (2020). Virtual world as a resource for hybrid education. International Journal of Emerging Technologies in Learning, 15(15), 94–109. https://doi.org/https://doi.org/10.3991/ijet.v15i15.13025 DOI: https://doi.org/10.3991/ijet.v15i15.13025
Djeki, E., Dégila, J., Bondiombouy, C., & Alhassan, M. H. (2022). E-learning bibliometric analysis from 2015 to 2020. Journal of Computers in Education, 9(4), 727–754. https://doi.org/https://doi.org/10.1007/s40692-021-00218-4 DOI: https://doi.org/10.1007/s40692-021-00218-4
Dyulicheva, Y. Y., & Glazieva, A. O. (2021). Game based learning with artificial intelligence and immersive technologies: an overview. CS&SE@SW,
Ferilli, S., Redavid, D., Di Pierro, D., & Loop, L. (2022). Functionality and architecture for a platform for independent learners: KEPLAIR. Intelligent Systems Design and Applications, 795–805. https://doi.org/https://doi.org/10.1007/978-3-030-96308-8_74 DOI: https://doi.org/10.1007/978-3-030-96308-8_74
Foster, A., & Shah, M. (2021). Framing and studying learning and identity in virtual learning environments. The Journal of Experimental Education, 89(3), 445–449. https://doi.org/https://doi.org/10.1080/00220973.2021.1873092 DOI: https://doi.org/10.1080/00220973.2021.1873092
Gamage, S. H. P. W., Ayres, J. R., & Behrend, M. B. (2022). A systematic review on trends in using moodle for teaching and learning. International Journal of STEM Education, 9(1). https://doi.org/https://doi.org/10.1186/s40594-021-00323-x DOI: https://doi.org/10.1186/s40594-021-00323-x
Gouveia, P. F., Luna, R., Fontes, F., Pinto, D., Mavioso, C., Anacleto, J., Timóteo, R., Santinha, J., Marques, T., Cardoso, F., & Cardoso, M. J. (2023). Augmented Reality in Breast Surgery Education. Breast Care, 18(3), 182-186. https://doi.org/https://doi.org/10.1159/000529587 DOI: https://doi.org/10.1159/000529587
Guo, H., & Gao, W. (2022). Metaverse-powered experiential situational english-teaching design: An emotion-based analysis method. Frontiers in Psychology, 13. https://doi.org/https://doi.org/10.3389/fpsyg.2022.859159 DOI: https://doi.org/10.3389/fpsyg.2022.859159
Guo, Z., Wang, Z., & Jin, X. . (2021). “Avatar to Person” (ATP) Virtual Human Social Ability Enhanced System for Disabled People M. Yan (Ed.), Wireless Communications and Mobile Computing 2021, 1-10. https://doi.org/https://doi.org/10.1155/2021/5098992 DOI: https://doi.org/10.1155/2021/5098992
Heift, T., & Schulze, M. . (2007). Errors and intelligence in computer-assisted language learning. Routledge. https://doi.org/https://doi.org/10.4324/9780203012215 DOI: https://doi.org/10.4324/9780203012215
Hsu, Y. C., Ho, H. N. J., Tsai, C. C., Hwang, G. J., Chu, H. C., Wang, C. Y., & Chen, N. S. (2012). Research trends in technology-based learning from 2000 to 2009: A content analysis of publications in selected journals. Educational Technology & Society, 15, 354–370. https://doi.org/https://eric.ed.gov/?id=EJ988474
Huang, H., Hwang, G. J., & Chang, S. C. . (2021). Facilitating decision making in authentic contexts: An SVVR-based experiential flipped learning approach for professional training. Interactive Learning Environments, 1-17. https://doi.org/https://doi.org/10.1080/10494820.2021.2000435 DOI: https://doi.org/10.1080/10494820.2021.2000435
Hwang, G. J., & Chien, S. Y. (2022). Definition, roles, and potential research issues of the metaverse in education: An artificial intelligence perspective. Computers and Education: Artificial Intelligence, 3, 100082. https://doi.org/https://doi.org/10.1016/j.caeai.2022.100082 DOI: https://doi.org/10.1016/j.caeai.2022.100082
Hwang, G. J., & Tu, Y. F. (2021). Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics, 9(6), 584. https://doi.org/https://doi.org/10.3390/math9060584 DOI: https://doi.org/10.3390/math9060584
Hwang, G. J., Chang, P. Y., Tseng, W. Y., Chou, C. A., Wu, C. H., & Tu, Y. F. (2022b). Research trends in artificial intelligence-associated nursing activities based on a review of academic studies published from 2001 to 2020. CIN: Computers, Informatics, Nursing, 40(12), 814–824. https://doi.org/https://doi.org/10.1097/cin.0000000000000897 DOI: https://doi.org/10.1097/CIN.0000000000000897
Hwang, G. J., Tu, Y. F., & Tang, K. Y. . (2022). AI in online-learning research: Visualizing and interpreting the journal publications from 1997 to 2019. The International Review of Research in Open and Distributed Learning, 23(1), 104–130. https://doi.org/https://doi.org/10.19173/irrodl.v23i1.6319 DOI: https://doi.org/10.19173/irrodl.v23i1.6319
Hwang, G. J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100001. https://doi.org/https://doi.org/10.1016/j.caeai.2020.100001 DOI: https://doi.org/10.1016/j.caeai.2020.100001
Jeong, H., Yi, Y., & Kim, D. (2022). An innovative e-commerce platform incorporating metaverse to live commerce. International Journal of Innovative Computing, Information and Control, 18(1), 221–229. https://doi.org/https://10.24507/ijicic.18.01.221
Ledwos, N., Mirchi, N., Yilmaz, R., Winkler-Schwartz, A., Sawni, A., Fazlollahi, A. M., Bissonnette, V., Bajunaid, K., Sabbagh, A. J., & Del Maestro, R. F. . (2022). Assessment of learning curves on a simulated neurosurgical task using metrics selected by artificial intelligence. Journal of Neurosurgery, 137(4), 1160–1171. https://doi.org/https://doi.org/10.3171/2021.12.jns211563 DOI: https://doi.org/10.3171/2021.12.JNS211563
Lee, H. M., Ham, S. M., Moon, H., Kwon, H. M., Rho, J. H., & Seo, J. (2023a). A Metaverse Emotion Mapping System with an AIoT Facial Expression Recognition Device. Proceedings - 2023 IEEE International Conference on Metaverse Computing, Networking and Applications, MetaCom 2023, , https://doi.org/10.1109/MetaCom57706.2023.00132 DOI: https://doi.org/10.1109/MetaCom57706.2023.00132
Lee, J., & Kim, Y. (2023). Sustainable Educational Metaverse Content and System Based on Deep Learning for Enhancing Learner Immersion. Sustainability (Switzerland), 15(16). https://doi.org/https://doi.org/10.3390/su151612663 DOI: https://doi.org/10.3390/su151612663
Lee, J. Y. (2021). A Study on metaverse hype for sustainable growth. International Journal of Advanced Smart Convergence, 10(3), 72-80. https://doi.org/https://doi.org/10.7236/IJASC.2021.10.3.72
Li, H., Cui, C., & Jiang, S. (2022). Strategy for improving the football teaching quality by AI and metaverse-empowered in mobile internet environment. Wireless Networks. https://doi.org/https://doi.org/10.1007/s11276-022-03000-1 DOI: https://doi.org/10.1007/s11276-022-03000-1
Liang, J. C., Hwang, G. J., Chen, M. R. A., & Darmawansah, D. (2021). Roles and research foci of artificial intelligence in language education: an integrated bibliographic analysis and systematic review approach. Interactive Learning Environments, 1-27. https://doi.org/https://doi.org/10.1080/10494820.2021.1958348 DOI: https://doi.org/10.1080/10494820.2021.1958348
Lin, H. (2022). Application of web 2.0 technology to cooperative learning environment system design of football teaching. N. Venkateswaran (Ed.), Wireless Communications and Mobile Computing, 1-9. https://doi.org/https://doi.org/10.1155/2022/5132618 DOI: https://doi.org/10.1155/2022/5132618
Liu, C., Hwang, G.-J., Tu, Y., Yin, Y., & Wang, Y. (2021). Research advancement and foci of mobile technology-supported music education: a systematic review and social network analysis on 2008-2019 academic publications. In Interactive Learning Environments 31(7), 4535–4554. https://doi.org/https://doi.org/10.1080/10494820.2021.1974890 DOI: https://doi.org/10.1080/10494820.2021.1974890
López-Robles, J. R., Otegi-Olaso, J. R., Porto Gómez, I., & Cobo, M. J. (2019). 30 years of intelligence models in management and business: A bibliometric review. International Journal of Information Management, 48, 22–38. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2019.01.013 DOI: https://doi.org/10.1016/j.ijinfomgt.2019.01.013
Malle, N., & Ebeid, E. (2022). Open-source educational platform for fpga accelerated ai in robotics 8th International Conference on Mechatronics and Robotics Engineering (ICMRE), DOI: https://doi.org/10.1109/ICMRE54455.2022.9734102
Meta. (2022). Meta connect 2022: Meta quest pro, more social vr and a look into the future. https://doi.org/ https://about.fb.com/news/2022/10/meta-quest-pro-social-vr-connect-2022/
Mitra, S. (2023). Metaverse: A Potential Virtual-Physical Ecosystem for Innovative Blended Education and Training. Journal of Metaverse, 3(1), 66-72. https://doi.org/https://doi.org/10.57019/jmv.1168056 DOI: https://doi.org/10.57019/jmv.1168056
Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A multidisciplinary survey and framework for design and evaluation of explainable AI systems. ACM Transactions on Interactive Intelligent Systems, 11(3-4), 1-45. https://doi.org/https://doi.org/10.1145/3387166 DOI: https://doi.org/10.1145/3387166
Mueen, A., Zafar, B., & Manzoor, U. . (2016). Modeling and predicting students’ academic performance using data mining techniques. International Journal of Modern Education and Computer Science, 8(11), 36–42. https://doi.org/https://doi.org/10.5815/ijmecs.2016.11.05 DOI: https://doi.org/10.5815/ijmecs.2016.11.05
Noor-Hanita, Z., Khatijah, L. A., Kamaruzzaman, S., Karuthan, C., & Raja Mokhtar, R. A. . (2022). A pilot study on development and feasibility of the ‘MyEducation: CABG application’ for patients undergoing coronary artery bypass graft (CABG) surgery. BMC Nursing, 21(1). https://doi.org/https://doi.org/10.1186/s12912-022-00814-4 DOI: https://doi.org/10.1186/s12912-022-00814-4
Novellino, A., Bonofiglio, L., Cimmino, V., & Napoletani, L. (2022). STEP - smart education platform 13th International Multi-Conference on Complexity, Informatics and Cybernetics, https://doi.org/10.54808/IMCIC2022.01.147 DOI: https://doi.org/10.54808/IMCIC2022.01.147
Precup, R. E., Preitl, S., Petriu, E., Bojan-Dragos, C. A., Szedlak-Stinean, A.-I., Roman, R. C., & Hedrea, E. L. (2020). Model-based fuzzy control results for networked control systems. Reports in Mechanical Engineering, 1(1), 10–25. https://doi.org/https://doi.org/10.31181/rme200101010p DOI: https://doi.org/10.31181/rme200101010p
Salman, H., Almohsen, E., Henari, T., Shatnawi, S., Buzaboon, A., Fardan, M., & Albinali, K. (2023). Using Machine Learning and SEM to Analyze Attitudes towards adopting Metaverse in Higher Education 2023 International Conference on Smart Applications, Communications and Networking, SmartNets, https://doi.org/10.1109/SmartNets58706.2023.10215936 DOI: https://doi.org/10.1109/SmartNets58706.2023.10215936
Shukla, A. K., Janmaijaya, M., Abraham, A., & Muhuri, P. K. (2019). Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018). Engineering Applications of Artificial Intelligence, 85, 517–532. https://doi.org/https://doi.org/10.1016/j.engappai.2019.06.010 DOI: https://doi.org/10.1016/j.engappai.2019.06.010
Smart, J., Cascio, J., & Paffendorf, J. (2007). Metaverse road map: Pathways to the 3d web. metaverse: A crossindustry public foresight project. https://doi.org/https://www.metaverseroadmap.org/MetaverseRoadmapOverview.pdf
Tlili, A., Huang, R., Shehata, B., Liu, D., Zhao, J., Metwally, A. H. S., Wang, H., Denden, M., Bozkurt, A., Lee, L.-H., Beyoglu, D., Altinay, F., Sharma, R. C., Altinay, Z., Li, Z., Liu, J., Ahmad, F., Hu, Y., Salha, S., Abed, M., & Burgos, D. (2022). Is Metaverse in education a blessing or a curse: A combined content and bibliometric analysis. Smart Learning Environments, 9(1). https://doi.org/https://doi.org/10.1186/s40561-022-00205-x DOI: https://doi.org/10.1186/s40561-022-00205-x
Tu, Y. F., & Hwang, G. J. (2020). Transformation of educational roles of library-supported mobile learning: A literature review from 2009 to 2018. Electron Libr, 38, 695–710. https://doi.org/https://doi.org/10.1108/EL-10-2019-0230 DOI: https://doi.org/10.1108/EL-10-2019-0230
Wu, S. H., Lai, C. L., Hwang, G. J., & Tsai, C. C. (2021). Research trends in technology-enhanced chemistry learning: A review of comparative research from 2010 to 2019. Journal of Science Education and Technology, 30(4), 496–510. https://doi.org/https://doi.org/10.1007/s10956-020-09894-w DOI: https://doi.org/10.1007/s10956-020-09894-w
Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599. https://doi.org/https://doi.org/10.1016/j.compedu.2019.103599 DOI: https://doi.org/10.1016/j.compedu.2019.103599
Zhai, X., Yin, Y., Pellegrino, J. W., Haudek, K. C., & Shi, L. (2020). Applying machine learning in science assessment: A systematic review. Studies in Science Education, 56(1), 111–151. https://doi.org/https://doi.org/10.1080/03057267.2020.1735757 DOI: https://doi.org/10.1080/03057267.2020.1735757
Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., & Weston, J. (2018). Personalizing dialogue agents: I have a dog, do you have pets too? Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, https://doi.org/10.18653/v1/p18-1205 DOI: https://doi.org/10.18653/v1/P18-1205
Zhao, J., Lu, Y., Zhou, F., Mao, R., & Fei, F. (2022). Systematic bibliometric analysis of research hotspots and trends on the application of virtual reality in nursing. Frontiers in Public Health, 10. https://doi.org/https://doi.org/10.3389/fpubh.2022.906715 DOI: https://doi.org/10.3389/fpubh.2022.906715

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Iza Guspian, Indah Noviyanti, Ary Fakturrachman Aryansyah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.